Genomewide linkage searches for Mendelian disease loci can be efficiently conducted using high-density SNP genotyping arrays.
نویسندگان
چکیده
Genomewide linkage searches aimed at identifying disease susceptibility loci are generally conducted using 300-400 microsatellite markers. Genotyping bi-allelic single nucleotide polymorphisms (SNPs) provides an alternative strategy. The availability of dense SNP maps coupled with recent technological developments in highly paralleled SNP genotyping makes it practical to now consider the use of these markers for whole-genome genetic linkage analyses. Here, we report the findings from three successful genomewide linkage analyses of families segregating autosomal recessively inherited neonatal diabetes, craniosynostosis and dominantly inherited renal dysplasia using the Affymetrix 10K SNP array. A single locus was identified for each disease state, two of which are novel. The performance of the SNP array, both in terms of efficiency and precision, indicates that such platforms will become the dominant technology for performing genomewide linkage searches.
منابع مشابه
Pitfall of identifying a disease locus by using low-resolution SNP arrays
Until recently, a whole-genome scan using a set of 300400 polymorphic DNA microsatellite markers was considered the most favoured strategy for gene mapping in Mendelian disorders. In many situations, however, it has not been possible to unravel significant disease loci by using DNA markers spaced across the genome at 10 cM intervals. Nowadays, to facilitate gene mapping or genome-wide associati...
متن کاملOptimization Methods for Genotype Data Analysis in Epidemiological Studies
Recent improvement in accessibility of high throughput DNA sequencing brought a great deal of attention to disease association and susceptibility studies. Successful genome-wide searches for disease-associated gene variations have been recently reported [18,26]. However, complex diseases can be caused by combinations of several unlinked gene variations. This chapter addresses computational chal...
متن کاملUnderstanding and utilizing crop genome diversity via high-resolution genotyping.
High-resolution genome analysis technologies provide an unprecedented level of insight into structural diversity across crop genomes. Low-cost discovery of sequence variation has become accessible for all crops since the development of next-generation DNA sequencing technologies, using diverse methods ranging from genome-scale resequencing or skim sequencing, reduced-representation genotyping-b...
متن کاملHomozygosity mapping with SNP arrays identifies TRIM32, an E3 ubiquitin ligase, as a Bardet-Biedl syndrome gene (BBS11).
The identification of mutations in genes that cause human diseases has largely been accomplished through the use of positional cloning, which relies on linkage mapping. In studies of rare diseases, the resolution of linkage mapping is limited by the number of available meioses and informative marker density. One recent advance is the development of high-density SNP microarrays for genotyping. T...
متن کاملEffect of Combining Multiple CNV Defining Algorithms on the Reliability of CNV Calls from SNP Genotyping Data
In addition to single-nucleotide polymorphisms (SNP), copy number variation (CNV) is a major component of human genetic diversity. Among many whole-genome analysis platforms, SNP arrays have been commonly used for genomewide CNV discovery. Recently, a number of CNV defining algorithms from SNP genotyping data have been developed; however, due to the fundamental limitation of SNP genotyping data...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 32 20 شماره
صفحات -
تاریخ انتشار 2004